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Abstract
We analyze the possibility of tomographic reconstruction of a system of three-
level atoms in both non-degenerate and degenerate cases. In the non-degenerate
case (when both transitions can be accessed independently) a complete
reconstruction is possible. In the degenerate case (when both transitions are
excited simultaneously), the complete reconstruction is achievable only for a
single atom in the � configuration. For multiple � atoms, or even a single
atom in the � configuration, only partial reconstruction is possible. Examples
of one- and two-atom cases are explicitly considered.

PACS number: 03.65.Wj

1. Introduction

Quantum tomography is now an accepted technique to reconstruct the state of a quantum
system [1]. Recent applications include the reconstruction of numerous physical systems,
such as a radiation field [2], trapped ions and molecular vibrational states [3–5], spin [6, 7]
and some other systems [8, 9].

The main idea behind quantum tomography is to use population measurements of the
‘rotated’ density matrix of the system. Explicitly, if ρ is the density matrix, a tomogram
ω(ψ, κ) is defined by

ω(ψ, κ) ≡ 〈ψ |U(κ)ρU−1(κ)|ψ〉 (1)

where

ρ(κ) ≡ U(κ)ρU−1(κ) (2)

is the density matrix rotated by the unitary transformation U and κ stands for all the parameters
required to uniquely specify U. By varying the input parameters κ , one obtains a complete
collection of different observables (called a quorum), from which a characterization of the
initial quantum state of the system can be obtained [10].

Every tomographic scheme is centered on the possibility of inverting equation (1).
This inversion and the corresponding reconstruction of ρ from ω(ψ, κ) can always be
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mathematically achieved [11, 12] when a Lie group G acts irreducibly in the Hilbert space
appropriate for the description of the quantum system under investigation. Experimental
success depends on whether or not all the requirements element in G can be practically
implemented.

The objective of this paper is to study the possible tomographic reconstruction of the
density matrix describing a collection of three-level atoms. Several approaches have already
been proposed to reconstruct the state of a general three-level system (qutrit). In [13–15],
the reconstruction of the quantum state of a three-level optical system is implemented for a
frequency- and estimating quantum states and measuring fourth-order field moments. The use
of non-orthogonal measurements as a way to reconstruct the state of a system (provided those
measurements span the Hilbert space) as well as a detailed example of reconstruction for one-
and two-qutrit systems, is considered in [7].

Even though one technically may require only a finite number of different experimental
set-ups for complete tomographic reconstruction of atomic states, we will focus on the so-
called redundant reconstruction, which implies a continuous set of measurements ‘blanketing’
all the parameter space. We justify this redundancy on the grounds that the reconstruction of a
many-atom system would, in practice, require a large number of such discrete measurements.

Our strategy is to investigate tomographic reconstruction of the atomic state by probing
atoms through the application of a carefully selected sequence of dispersive and resonant
electromagnetic pulses.

Once an initial pulse of classical light has created a state of collective excitation in an
ensemble of cold atoms, another pulse converts the atomic excitations into field excitations
generating, for different atomic configurations, photons in a well-defined spatial and temporal
mode [16]. The total number of such photons is determined by photoelectric detection so that
a probability of detecting a given number of photons can be directly related to a tomogram
[17].

In this work, our analysis will focus on two of three fundamentally different atomic
configurations. They are the so-called � and � configurations, distinguished by the presence
of transition degeneracies from the generic non-degenerate configuration.

In section 3, we discuss this non-degenerate case, where transition frequencies are
essentially different for distinct atomic transitions and where each transition can be
independently interrogated by a pulse of the appropriate frequency. In this case, the density
matrix can be completely reconstructed.

In sections 4 and 5, the systems under consideration contain atomic transitions having
the same frequency; it is not possible to interrogate every transition individually. We will
consider these cases at length and highlight the differences between the (global) symmetries
pertinent to the description of these inequivalent degenerate atomic configurations. We will
show, for these cases, that the density matrix cannot in general be completely reconstructed
and that the partial information extracted from the measurements in the case of � and � atoms
is essentially different.

2. u(3), su(3) and three-level atoms

Our Hamiltonian governing the evolution of a collection of A three-level atoms in a classical
field has the form

Ĥ = Ĥ 0 + Ĥ 12 + Ĥ 23 (3)
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where Ĥ 0 is the free atomic Hamiltonian, and Ĥ ij is the interaction term between levels i
and j . Throughout this work, we will assume the ordering E1 � E2 � E3 of individual
atomic levels.

The terms in equation (3) are most transparently analyzed by introducing a set {Ŝij ; i, j =
1, 2, 3} of collective transition operators that satisfy the standard commutation relations of the
u(3) algebra:

[Ŝij , Ŝkl] = δjkŜil − δil Ŝkj . (4)

Thus, the Hilbert space for our systems naturally decomposes into a sum of subspaces invariant
under the action of the Lie group U(3).

We further assume that the A atoms are indistinguishable and their states are fully
symmetric under permutation of the particle indices. Hence, the possible states of our system
belong to a single unitariy irreducible representation of U(3) having dimension 1

2 (A+1)(A+2)

and denoted by (A, 0) in mathematics. The dimension of the Hilbert space is given by the
number of ways of distributing A bosons in three modes.

If we introduce the atomic basis

{|n1n2n3〉, n1, n2, n3 � 0, n1 + n2 + n3 = A}, (5)

where nj denotes the population in the j th atomic level, the matrix elements of Ŝij can be
easily evaluated using the Schwinger realization:

Ŝij �→ a
†
i aj . (6)

In the one-atom case, this yields

Ŝij |j 〉 = |i〉, (7)

where the following identification

|100〉 ↔ |1〉, |010〉 ↔ |2〉, |001〉 ↔ |3〉, (8)

has been made.
In terms of Ŝij ’s, the Hamiltonian of equation (3) takes the form

Ĥ 0 =
3∑

i=1

EiŜii , (9)

Ĥ 12 = g1(e
iω1t Ŝ12 + e−iω1t Ŝ21), (10)

Ĥ 23 = g2(e
iω2t Ŝ23 + e−iω2t Ŝ32), (11)

where ω1 and ω2 are frequencies of the external fields and g1 and g2 are coupling constants,
chosen to be real for simplicity.

The operator

N̂ =
3∑

i=1

Ŝii (12)

commutes with all other operators in the u(3) algebra. This operator is proportional to the unit
operator when acting on occupational states of the form |n1n2n3〉,

N̂ |n1n2n3〉 = A|n1n2n3〉. (13)

Removing N̂ reduces u(3) to su(3). Thus, the possible evolutions generated by the Hamiltonian
Ĥ are, up to an unimportant global phase, finite SU(3) transformations.

3
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Figure 1. A typical level scheme for the non-degenerate case.

3. The non-degenerate case

The non-degeneracy condition is understood to imply that the atomic transition frequencies
(E3 − E2) and (E2 − E1) are sufficiently distinct to satisfy

(E3 − E2) − (E2 − E1) � g1, (E3 − E2) − (E2 − E1) � g2. (14)

In this manner, each transition can be interrogated separately by an external field. A typical
non-degenerate system is illustrated in figure 1.

For tomographic purposes, the level pairs (1 ↔ 2), (2 ↔ 3) and their respective
transitions, if taken in respective isolation, could be considered as independent two-level
subsystems. However the full system must be treated as a three-level system under SU(3)

evolution.
In the rotating frame, the Hamiltonian of equation (3) takes the form

Ĥ int = �23Ŝ33 − �12Ŝ11 + g12(Ŝ12 + Ŝ21) + g23(Ŝ23 + Ŝ32), (15)

where

�12 ≡ E2 − E1 − ω1, �23 ≡ E3 − E2 − ω2. (16)

Because the frequencies ω1 and ω2 of the external field are adjustable parameters, two
types of field pulses can be applied to our system. The first type is characterized by �ij ≈ 0
and thus resonant; it stimulates the corresponding atomic transitions. The second type is
characterized by �ij � gij and is thus far-off resonant (dispersive); this kind of pulse leads
to some phase shift.

The corresponding resonant and dispersive evolution operators have the form

UR
ij (βij ) = exp[−iβij (Ŝij + Ŝj i)], i 	= j, (17)

UD
11(φ12) = exp[iφ12Ŝ11], (18)

UD
33(φ23) = exp[iφ23Ŝ33], (19)

where βij = gij tij and φij = (
�ij +g2

ij

/
�ij

)
τij . Here, tij , τij are time intervals, not necessarily

equal. It should be noted, that for short interaction times τij satisfying g2τij /�ij 
 1 and
g2τij 
 �2

ij , the second term in the expression for φij can be obviously neglected. However,
for long interaction times, exp(−i�ij τij ) becomes strongly oscillating and the measurements
should be carried out in stroboscopic times, τij = 2πn/�ij .

For a complete reconstruction of the density matrix in the absence of degeneracy, it suffices
to measure the probability of detecting zero photons (i.e. zero fluorescence condition) in the
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irradiated field. This corresponds to the detection the atoms in the ground state, |A00〉. It is
worth noting here that, in the non-redundant scheme when only a finite number of different
pulses have to be applied, the measurement of nonzero photons are required [17].

It is possible, by combining operations in equations (17)–(19), to obtain a element of the
group U(3) sufficiently general for our purpose. This is best seen by first observing that an
element of SU(3) is parameterized by eight real numbers and can be conveniently factorized
[18] into a product of SU(2) subgroup transformations:

Ū (α1, β1, γ1, α2, β2, α3, β3, γ3) = R23(α1, β1, γ1) · R12(α2, β2, α2) · R23(α3, β3, γ3). (20)

The action of such a group element on basis states of an irreducible representation is given
in [18].

The notation

n ≡ (n1n2n3), I = I23 ≡ 1
2 (n2 + n3), (21)

will be a useful shorthand throughout this paper. In particular, we note that

〈ν|R23(α, β, γ )|n〉 ≡ 〈ν1ν2ν3|R23(α, β, γ )|n1n2n3〉 = DI23
Mν,Mn

(�),

〈ν|R12(α, β, γ )|n〉 ≡ 〈ν1ν2ν3|R12(α, β, γ )|n1n2n3〉 = DI12
mν,mn

(�),
(22)

where DJ
MM ′ an SU(2) Wigner D-function and

I12 = 1
2 (n1 + n2), Mn = 1

2 (n2 − n3), mn = 1
2 (n1 − n2). (23)

More generally, the definition of states for the irrep (λ, µ) and SU(3) elements between those
states can be found in [18]. Specialized results are collected in appendix A. In particular, some
formulae in this section implicitly depend on matrix elements of states in irreps of the type
(A, 0), (0, A) and (σ, σ ). The notation of SU(3)D functions conforms to that of [18] and
uses the pair (λ, µ) with the labels n, I to unambiguously distinguish the SU(3)D functions.
For occupational states, n, I are given by equation (21).

Because the state |A00〉 is, up to a global phase, unchanged by the action of dispersive
pulses and operations of the form R23, it is enough to consider a sequence of pulses of the
form:

U(ϕ23, β23, ϕ12, β12) = UD
33(−ϕ23)U

R
23(β23)U

D
11(ϕ12)U

R
12(β12). (24)

In the single-atom case, the evolution operator equation (24) is a 3 × 3 matrix explicitly
given by

U(ϕ23, β23, ϕ12, β12)

=

 eiϕ12 cos (β12) −i eiϕ12 sin (β12) 0

−i cos (β23) sin (β12) cos (β12) cos (β23) −i sin(β23)

−e−iϕ23 sin (β12) sin(β23) −i e−iϕ23 cos (β12) sin (β23) e−iϕ23 cos(β23)


 .

(25)

U(ϕ23, β23, ϕ12, β12) can be more easily analyzed in the factorized form

U(ϕ23, β23, ϕ12, β12) = e− 1
3 i(ϕ12−ϕ23)Ū , (26)

where

Ū =

1 0 0

0 −i ei(χ−ϕ12) cos(β23) ei(2χ−ϕ12) sin(β23)

0 −e−i(2χ−ϕ12) sin(β23) i e−i(χ−ϕ12) cos(β23)




×

eiχ cos(β12) −sin(β12) 0

sin(β12) e−iχ cos(β12) 0
0 0 1





1 0 0

0 i eiχ 0
0 0 −i e−iχ


 , (27)
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and

χ = 1
3 (2ϕ12 + ϕ23). (28)

Clearly, the matrix U(ϕ23, β23, ϕ12, β12) of equation (26) is an element of U(3) whereas Ū of
equation (27) is an SU(3) transformation. Comparing with the parametrization of [18], we
have the correspondences

α1 → −ϕ23 − 1
2π, β1 → 2β23, γ1 → 3

2π + 2
3ϕ12 + 1

3ϕ23

α2 → − 2
3ϕ12 − 1

3ϕ23, β2 → 2β12,

α3 → − 4
3ϕ12 − 2

3ϕ23 − π, β3 = 0, γ3 = 0.

(29)

Note that, although Ū is not the most general SU(3), it can be multiplied on the right by a
transformation of the form

R12(ᾱ2, 0, ᾱ2)R23(ᾱ3, β̄3, γ̄3) =

×




e−iᾱ2 0 0

0 e
i
2 i(2ᾱ2−ᾱ3−γ̄3) cos

(
β̄3

2

) −e
i
2 (2ᾱ2−ᾱ3+γ̄3) sin

(
β̄3

2

)
0 e

i
2 (ᾱ3−γ̄3) sin

(
β̄3

2

)
e

i
2 (ᾱ3+γ̄3) cos

(
β̄3

2

)

 (30)

without affecting the dynamics of the |100〉 state. Thus, Ū is equivalent to a general
transformation when acting on |100〉.

Expanding the density matrix in the occupational basis:

ρ =
∑
nν

|n〉〈ν|ρn,ν, (31)

and introducing the shorthand τ = (ϕ23, β23, ϕ12, β12), we rapidly obtain

ω(τ) =
∑
nν

〈A00|Ū (τ )|n〉〈ν|Ū †(τ )|A00〉ρn,ν

=
∑
nν

(−1)ν2D(A,0)

(A00)0,nI (τ )D(0,A)

(0AA)0,ν∗I ′(τ )ρn,ν, (32)

where

D(λ,µ)

n1 Ī1,n2I2
(τ ) ≡ 〈(λ, µ)n1I1|U(τ)|(λ, µ)n2I2〉 (33)

is an SU(3) Wigner-function for the irrep (λ, µ). Further notational details and properties of
these functions (in particular equation (A.4)) can be found in appendix A.

Products of SU(2)D-functions can be decomposed into sums of D-functions multiplied
by products of SU(2) Clebsch–Gordan coefficients. The same holds for products of SU(3)D-
functions provided that we use SU(3) Clebsch–Gordan technology. Thus, given that SU(3)-
coupling (A, 0) ⊗ (0, A) decomposes in the direct sum [19]

(A, 0) ⊗ (0, A) = (A,A) ⊕ (A − 1, A − 1) ⊕ · · · ⊕ (0, 0),

=
A⊕

λ=0

(λ, λ), (34)

we have

D(A,0)

(A00)0,nI (τ )D(0,A)

(0AA)0,ν∗I ′(τ ) =
∑
λ,J

D(λ,λ)

(λλλ)0,N(λ)J
(τ )

〈
(A, 0)

(A00)0

(0, A)

(0AA)0

∣∣∣∣ (λ, λ)

(λλλ)0

〉

×
〈
(A, 0)

nI

(0, A)

ν∗I ′

∣∣∣∣ (λ, λ)

N(λ)J

〉
, (35)
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3

Figure 2. Schematic representation of a single atom in a � configuration.

where

N(λ) = (n1 + ν∗
1 − (A − λ), n2 + ν∗

2 − (A − λ), n3 + ν∗
3 − (A − λ)), (36)

and where 〈
(A, 0)

n1I1

(0, A)

n2I2

∣∣∣∣ (λ, λ)

N(λ)I3

〉
(37)

is the SU(3) Clebsch–Gordan coefficient for the coupling of |(A, 0)n1I1〉 and |(0, A)n2I2〉
to |(λ, λ)N(λ)I3〉. The appearance of extra factors of (A − λ) in the construction of N(λ) is
discussed in equation (B.10) of appendix B.

Inserting equation (35) in equation (32) yields

ω(τ) =
∑
nνλJ

(−1)ν2ρn,νD(λ,λ)

(λλλ)0,N(λ)J
(τ )

×
〈

(A, 0)

(A00)0

(0, A)

(0AA)0

∣∣∣∣ (λ, λ)

(λλλ)0

〉 〈
(A, 0)

nI

(0, A)

ν∗I ′

∣∣∣∣ (λ, λ)

N(λ)J

〉
. (38)

After some straightforward manipulations detailed in appendix C, we obtain the final
expression

(−1)ν2ρn,ν =
∑
µJ

(µ + 1)3

1024π5

〈
(A, 0)

(A00)0

(0, A)

(0AA)0

∣∣∣∣ (µ,µ)

(µµµ)0

〉−1

×
〈
(A, 0)

nI

(0, A)

ν∗I ′

∣∣∣∣ (µ,µ)

N(µ)J

〉 ∫
d�D(µ,µ)∗

(µµµ)0,N(µ)J
(τ )ω(τ). (39)

As there is no restriction on n or ν∗, equation (39) shows that, in the non-degenerate case,
the density matrix can be completely reconstructed.

4. Degenerate Λ-type atomic systems

Let us turn our attention to the case of a degenerate �-type system. A typical � atom is
schematically illustrated in figure 2.

In the single-atom case, the allowed transitions are |1〉 ↔ |3〉, |2〉 ↔ |3〉. The degeneracy
condition is

E3 − E1 = E3 − E2. (40)

In the multi-atom case, the only atomic configuration that can be unambiguously identified
by photon counting is when every atom is excited, i.e. when the system of A atoms is in the
state |00A〉.

7
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3

1 2

~

~~

Figure 3. The basis states resulting from the transformation T12.

4.1. The evolution

In the rotating frame, the interaction Hamiltonian has the form

Ĥ� = �S33 + g(S13 + S23) + g(S31 + S32), (41)

where � = E3 − E1 − ω and g1 = g2 = g for simplicity.
In the single-atom case, Ĥ� can be represented as the following 3 × 3 matrix:

Ĥ� =

0 0 g

0 0 g

g g �


 . (42)

A simple basis transformation

|1〉 �→ |1̃〉 = 1√
2
(|1〉 − |2〉) , |2〉 �→ |2̃〉 = 1√

2
(|1〉 + |2〉) , |3〉 �→ |3̃〉, (43)

given by the constant matrix

T12 =




1√
2

1√
2

0

− 1√
2

1√
2

0

0 0 1


 , (44)

transforms equation (42) to the block diagonal form

Ĥ� �→ Ĥ T = T −1
12 Ĥ�T12 =


0 0 0

0 0
√

2g

0
√

2g �


 . (45)

The effect T12 on basis states is illustrated in figure 3; T12 produces a dark state |1̃〉
completely decoupled from the remaining doublet. In view of this we can expect, on general
grounds, that a complete reconstruction will not be possible as our Hamiltonian Ĥ� cannot
possibly probe the dark state |1̃〉.

Using the basis {|1̃〉, |2̃〉, |3̃〉}, the resonant pulses, with � = 0, are of the form

ŨR
�(

√
2gt) =


1 0 0

0 cos(
√

2gt) i sin(
√

2gt)

0 i sin(
√

2gt) cos(
√

2gt)


 . (46)

8
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In the same basis, the dispersive pulses, with � � g, are described in the stroboscopic
approximation by the effective evolution operator

ŨD
� (2g2t/�) =




1 0 0

0 e2ig2t/� 0

0 0 e−2ig2t/�


 . (47)

In the two-dimensional subspace spanned by |2̃〉 and |3̃〉, the operators ŨR
� and ŨD

�

correspond to SU(2) rotations about the x̂ and ẑ axes, respectively:

ŨR
�(α) �→ Rx

23(α), ŨD
� (β) �→ Rz

23(β), (48)

in an obvious notation. A sufficiently general sequence of pulses can thus be written as

Ũ�(�̃) = Rz
23(α) · Rx

23(β) · Rz
23(γ ),

= Rz
23

(
α +

π

2

)
· R

y

23(β) · Rz
23

(
γ − π

2

)
= R23(�̃). (49)

For the one-atom case, the 3 × 3 matrix representation for this evolution has the form

Ũ�(�̃) =

1 0 0

0 ∗ ∗
0 ∗ ∗


 (50)

where ∗ indicates a nonzero entry. The block diagonal form of Ũ is explicit. It shows that,
for a system containing one or more than one atom, there will always be at least one subspace
which cannot be reached in the course of evolution of |00A〉; such decoupled subspaces are
an obstruction to complete reconstruction.

To illustrate this, we expand the density matrix for an A-atom system in the basis
{|ñ1ñ2ñ3〉} of occupation of the states |1̃〉, |2̃〉 and |3̃〉:

ρ̃ =
∑

ñ1ñ2ñ3 ν̃1 ν̃2 ν̃3

|ñ1ñ2ñ3〉〈ν̃1ν̃2ν̃3|ρ̃(ñ1ñ2ñ3),(ν̃1 ν̃2 ν̃3). (51)

Using the shorthand ñ for the triplet ñ1ñ2ñ3, we can write the tomogram as

ω(�̃) =
∑
ñν̃

〈00A|R23(�̃)|ñ1ñ2ñ3〉〈ν̃1ν̃2ν̃3|R23(�̃)|00A〉ρ̃(ñ1ñ2ñ3),(ν̃1 ν̃2 ν̃3). (52)

As the R23(�̄) rotation does not affect the first atomic index and acts irreducibly as an
SU(2) rotation in each the subspace spanned by states having a common fixed ñ1, we write

|ñ1ñ2ñ3〉 → |ñ1; Im〉, |ν̃1ν̃2ν̃3〉 → |ν̃1; Iµ〉, (53)

where

I = 1
2 (ñ2 + ñ3) = 1

2 (ν̃2 + ν̃3), m = 1
2 (ñ2 − ñ3), µ = 1

2 (ν̃2 − ν̃3). (54)

Furthermore, the tomograms of equation (52) must have ñ1 = ν̃1 = 0, so equation (54)
leads to

ω(�̃) =
∑
mµ

DI
−I,m(�̃)DI∗

−I,µ(�̃)ρ̃(0;Im),(0;Iµ)

=
∑
mµL

(−1)−I−µCL0
II,I−IC

LM
Im,I−µDL

0,M(�̃)ρ̃(0;Im),(0;Iµ), (55)

where ρ̃(n1n2n3),(ν1ν2ν3) → ρ̃(n1;Im),(ν1;Iµ) has been used to conform to the notation of
equation (53), where DI

mm′ is the usual SU(2)D function and where CLM
L1m1,L2m2

is an SU(2)

Clebsch–Gordan coefficient.

9
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Table 1. Basis states for two atoms in the � configuration.

|n1n2n3〉 |1̃〉n1 |2〉n2 |3〉n3

|002〉 |3̃〉|3̃〉 |0; 1,−1〉
|011〉 1√

2
(|2̃〉|3̃〉 + |3̃〉|2̃〉) |0; 1, 0〉

|020〉 |2̃〉|2̃〉 |0; 1, 1〉
|101〉 1√

2
(|1̃〉|3̃〉 + |3̃〉|1̃〉) ∣∣1; 1

2 , − 1
2

〉
|110〉 1√

2
(|1̃〉|2̃〉 + |2̃〉|1̃〉) ∣∣1; 1

2 , 1
2

〉
|200〉 |1̃〉|1̃〉 |2; 0, 0〉

Multiplying both sides of (55) by DL′∗
0,M(�̃), integrating over SU(2) and using

orthogonality of the Clebsch–Gordan coefficients rapidly gives the elements of the density
matrix that can be reconstructed from the tomographic process as

ρ̃(0;Im),(0;Iµ) = (−1)I+µ
∑
L

2L + 1

8π2
CLM

Im,I−µ

(
CL0

II,I−I

)−1
∫

d�̃ ω(�̃)DL∗
0,M(�̃). (56)

4.2. Reconstruction for state of one and two �-type atoms

In a system containing a single atom, the Hilbert space is spanned, in the notation of
equation (53), by states of the form |ñ1; Im〉, with

|1̃〉 = |100〉, |2̃〉 = ∣∣0; 1
2

1
2

〉
, |3̃〉 = ∣∣0; 1

2 ,− 1
2

〉
. (57)

Under the evolution Ũ�(�̃) = R23(�̃), the initial state
∣∣0; 1

2 ,− 1
2

〉
cannot reach the dark state

so it is only possible to reconstruct element of ρ of the form ρ(0; 1
2 m),(0; 1

2 m′), with m,m′ = ± 1
2 .

The last diagonal element, ρ(1;00),(1;00) can be inferred from the normalization. None of the
remaining four matrix elements can be determined by our scheme.

In the two-atom case, an even smaller proportion of matrix elements can be recovered.
Using again the notation of equation (53), states of the irrep (2, 0) are conveniently given, in
the occupational, tensor product and SU(2) basis |ñ1; �m〉, in table 1.

The initial state |002〉 will not evolve out of the I = 1 subspace, so only matrix elements
of the form ρ(0;1m)(0;1m′) can be reconstructed using our scheme. These represent only nine of
the possible 36 elements of the density matrix.

We conclude this section by noting that the situation obviously worsens (in the sense that
a smaller and smaller proportions of the matrix elements can be recovered) as the number of
atoms increases.

5. Degenerate Ξ-type atomic systems

Finally, we consider the case of the � system. It is illustrated, for a single atom, in figure 4.
For this configuration, the condition E2 − E1 = E3 − E2 holds.

5.1. The evolution

In the rotating frame, the Hamiltonian governing the evolution of a collection of A atoms in
the � configuration in an external field has the form (g1 = g2 = g)

10
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2

1

3

Figure 4. The � configuration for a single atom.

Ĥ� = �(Ŝ33 − Ŝ11) + g(Ŝ12 + Ŝ32 + Ŝ21 + Ŝ23), (58)

where � = 1
2 (E3 − E1) − ω.

Important insight into the nature of this Hamiltonian can be gained by noting that the
operators Ŝ11 − Ŝ33 and Ŝ12 + Ŝ21 + Ŝ23 + Ŝ32 are, in fact, proportional to two of the three
generators of the so(3) subalgebra of su(3):

Ŝ11 − Ŝ33 �→ L̂z, Ŝ12 + Ŝ21 + Ŝ23 + Ŝ32 �→
√

2L̂x. (59)

Thus, the possible evolutions are elements of the SO(3) subgroup of SU(3).
Clearly, a convenient sequence of pulse is given by

U�(�) ≡ Rz(α) · Rx(β) · Rz(γ ),

= Rz(α + π/2) · Ry(β) · Rz(γ − π/2). (60)

Here, the resonant pulses are of the form

Rx(β) = exp(−iβ(Ŝ12 + Ŝ21 + Ŝ23 + Ŝ32)/
√

2) (61)

while the dispersive pulses are generated by Ŝ11 − Ŝ33.
It is important to note that, in the one-atom case, the exponentiation of Ĥ� in

equation (58) produces an evolution that acts irreducibly on the non-degenerate states of
the Hilbert space: in contrast with equation (49) of the � case, the ‘rotations’ Rx and Rz of
the � states are not restricted to a two-dimensional subspace of the whole Hilbert space.

To analyze the many-atom case, we start by observing that the state of the system for
which every the atom is completely excited, |00A〉, is an eigenstate of L̂z with eigenvalue
m = −A and is annihilated by L̂−. Here, L̂− = (Ŝ21 + Ŝ32)/

√
2 is constructed in the usual

way: L̂− = L̂x − iL̂y . Thus, |00A〉 is the unique angular momentum state |L,−L〉, with
L = A:

|00A〉 → |L = A,M = −A〉. (62)

As this state contains the largest possible number of excitations, it can be uniquely identified
through photon counting so that the corresponding tomogram is determined from the
probability of detecting 2A photons in the irradiated field.

The general correspondence between the occupational basis states |n1n2n3〉 is found in
[20] and given by

|LM〉 =
√

2L+M
(

1
2 (A + L)

)
!(L + M)!(L − M)!(2L + 1)(

1
2 (A − L)

)
!(A + L + 1)!

×((
a
†
2

)2 − 2a
†
1a

†
3

) 1
2 (A−L)

∑
p

(
a
†
1

)p(
a
†
2

)L+M−2p(
a
†
3

)p−M

2pp!(p − M)!(L + M − p)!
|0〉. (63)

11
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Table 2. Angular momentum basis states as linear combinations of occupational number states for
one and two atoms in the � configuration.

A L M |LM〉
1 1 1 a

†
1|0〉

0 a
†
2|0〉

−1 a
†
3|0〉

2 2 2 1√
2

(
a
†
1

)2|0〉
1 a

†
2a

†
1|0〉

0 1√
3

( (
a
†
2

)
2 + a

†
1a

†
3

) |0〉
−1 a

†
2a

†
3|0〉

−2 1√
2
(a

†
3)

2|0〉

2 0 0 1√
6

( (
a
†
2

)2 − 2a
†
1a

†
3

) |0〉

It is clear that, given an angular momentum state in the irrep (A, 0) of su(3), we can
unambiguously write it as a linear combination of occupational states, and vice versa. Thus,
we may expand

ρ =
∑

L1M1L2M2

|L1M1〉〈L2M2|ρL1M1,L2M2 , (64)

where L1, L2 run from A,A − 2, . . . , 1 or 0 depending if A is even or odd.
As the evolution is necessarily an element of SO(3), the tomogram takes the general

form

ω(�) =
∑

L1M1L2M2

〈A,−A|R(�)|L1M1〉〈L2M2|R†(�)|A,−A〉ρL1M1,L2M2 ,

=
∑
M1M2

DA
−A,M1

(�)DA∗
−A,M2

(�)ρAM1,AM2 ,

=
∑

M1M2J

(−1)−A−M2DJ
0,M(�)CJ0

A−A,AACJM
AM1,AM2

ρAM1,AM2 , (65)

with CJM
L1M1,L2M2

a regular angular momentum Clebsch–Gordan coefficient.
In a manner similar to the previous cases, multiplication by DJ ′∗

0,M(�), integration over
SO(3) and orthogonality of Clebsch–Gordan coefficients yields

(−1)A+M2ρAM1AM2 =
∑

J

2J + 1

8π2
CJM

AM1,AM2

(
CJ0

A−A,AA

)−1
∫

d�DJ∗
0,M(�)ω(�). (66)

The result clearly shows that only those linear combinations of occupational state that transform
by angular momentum L = A can be reconstructed.

5.2. Examples: one- and two-atom cases

For a single atom, we see from table 2, that the tomogram is constructed from an L = 1 state.
There is no other angular momentum multiplet and so the evolution, an element of SO(3),
will yield sufficiently many tomograms to guarantee complete reconstruction.

The matter is different for the two-atom case. In this case, the tomogram is constructed
using an L = 2 state but the Hilbert space also contains an L = 0 subspace, which cannot

12
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be reached from L = 2 with our evolution. Thus, if we are limited to measuring a total
of 2A photons, it will only be possible to recover ρ2M,2M ′ and impossible to reconstruct
ρ00,2M, ρ00,00, ρ2M,00. This is because, in our scheme, it is not possible to extract photons from
the L = 0 state, and the absence of photon does not pin down a particular state.

It may be possible to measure fewer than 2A photons, but this does not lead to more
information. There is only one state with M = A and one state with M = A− 1 (or M = −A

and M = −(A − 1)). It is possible to use the L = A,M = A − 1 state for the tomogram and
measure 2A − 1 or 2A − 2 photons, but we will recover nothing more than if we had started
with L = A,M = A.

There are two states with M = A−2; they belong different angular momentum multiplet.
Thus, if we measure, say, a total of 2(A−2) photons, it is not possible to know unambiguously
if this is the result of a complete cascade within the L = A − 1 multiplet or a partial cascade
within the L = A multiplet. This kind of limitation becomes obviously more severe as the
number of angular momentum multiplet containing a given M value increases.

6. Conclusions

We have proposed a physical realization applicable to the reconstruction of the quantum state
of three-level atomic systems. The information about atomic states is extracted by measuring
the total number of excitations after successive applications of electromagnetic field pulses.

We have shown that, in the non-degenerate case, the complete reconstruction of atomic
states is possible. Although the number of independent parameters required for a complete
reconstruction is less than needed for the complete parametrization of a generic element
of SU(3) group, a complete reconstruction is possible because, in addition to the usual
evolution of the system, another tool is available in the reconstruction scheme: the projective
measurement.

When degeneracies are present, the possibilities of reconstruction are limited. The origin
of these limitations is essentially different for atoms in � and � configuration. In both cases,
the evolution operator operators belong to a subgroup of the whole SU(3) group, and our
work illuminates the subtle distinction between the global properties of SO(3) and SU(2) as
subgroups of SU(3).

In the � case, the reconstruction is rooted in an SO(3) symmetry of the physically
available evolution operator; this symmetry provides information about a single subspace. In
the one-atom case, the Hilbert space contains precisely a single SO(3) subspace, so the density
matrix can be completely reconstructed. In the multiple-atom case, only reconstruction in one
pre-determined subspace is possible. In this case, our protocol would be to apply the sequence
of pulses of equation (60) with a subsequent measurement of the number of 2A of photons
in the irradiated field, giving us the tomogram appearing in the reconstruction formula of
equation (66). For completeness, we note here that we did not consider the effective two-
photon-like transition in the � system due to extremely narrow width of such transitions
(∼g2/�), which leads to serious experimental difficulties in its detection.

In the case of � configuration, the evolution operator generates an SU(2) transformation
and, even in the one-atom case, there is always more than a single SU(2) multiplet: a complete
reconstruction is impossible because there always exists invariant SU(2) ‘dark’ subspaces,
which cannot be uniquely identified by measuring irradiated photons. We stress that the
decomposition of the Hilbert space into invariant subspaces occurs as a result of the inability
to access independent transitions separately; this to be contrasted with the approach of [9],
wherein SU(2) decomposability arises from considerations of perfectly general polarization
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states. Note also that although the effective transitions between degenerate levels in the �

case are not sensitive to the atom-field detunings, they still require long interaction times.
The tomographic protocol for � differs from the �. After application of the sequence of

pulses equation (24) to a �-type atom, we have to measure the probability of detecting zero
irradiated photons, which leads to the tomogram used in equation (39).

Finally, we observe that the tomographic reconstruction process for a collection of non-
degenerate three-level atoms is a simple generalization of the familiar process used for two-
level quantum systems. In both instances, one uses the whole dynamic symmetry group to
carry out the inversion process. In contrast to this, we are restricted to a specific subgroup in
the degenerate cases, which essentially reduces our tools and actually limits the possibility of
the complete tomographic reconstruction.
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Appendix A. SU(3) basis states and D-functions

In this section, we review some notation useful mostly in section 3. Further details can be
found in [18].

The correspondence between the occupational basis and states of the (A, 0) is

|n1n2n3〉 �→ |(A, 0)nI 〉. (A.1)

In equation (A.1) and throughout this paper, n is a shorthand for (n1n2n3). Here, the (A, 0)

labels indicate that |n1n2n3〉 can be reached, using the Ŝij operators of equation (6), from the
state |A00〉. This state is killed by the so-called su(3) raising operators Ŝ12, Ŝ13 and Ŝ23. The
eigenvalues of the su(3) diagonal operators

ĥ1 = Ŝ11 − Ŝ22, ĥ2 = Ŝ22 − Ŝ33, (A.2)

acting on |A00〉 are, respectively, (A, 0).
The angular momentum label I is necessary to deal with the general case considered in

[18], where states of more general families of the type (p, q) are constructed. A state |(p, q)nI 〉
can be reached from the state

∣∣(p, q)(p +q, q, 0) 1
2p

〉
, i.e. with n1 = p +q, n2 = q, n3 = 0 and

I = 1
2p.

∣∣(p, q)(p + q, q, 0) 1
2p

〉
is killed by the su(3) raising operators, and the eigenvalues

of (ĥ1, ĥ2) are (p, q). When p and q are both nonzero, it is possible to have distinct states in
the same (p, q) family that have identical n, so the angular momentum label I is required to
distinguish these distinct states.

Some calculations require the evaluation of the matrix elements

〈n1n2n3|Ū (σ )|n1n2n3〉∗ = 〈(A, 0)nI |Ū (σ )|(A, 0)νI ′〉∗,
≡ D(A,0)∗

nI,νI ′ (σ ). (A.3)

This matrix element is related to the matrix element between basis states of the irrep (0, A),
which is conjugate to (A, 0), by

D(A,0)∗
nI,νI ′ (τ ) = (−1)n2+ν2D(0,A)

n∗I,ν∗I ′(τ ). (A.4)

Here,

D(0,A)
n∗I,ν∗I ′(τ ) ≡ 〈(0, A)n∗I |Ū (σ )|(0, A)ν∗I ′〉. (A.5)
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The relation between n and n∗ is

n = (n1, n2, n3) �→ n∗ = (A − n1, A − n2, A − n3). (A.6)

Using this and the results from [18], one can verify equation (A.4).
The dimension of (0, A) is the same as the dimension of (A, 0), but the construction

of [18] for basis state of |(0, A)n∗I 〉 requires twice as many quanta as the basis states of
|(A, 0)nI 〉.

Using equation (A.4), one can also verify that the D functions are orthogonal, in the sense
that

dim(λ, µ)

1024π5

∫
d�D(λ,µ)∗

nI,νL (�)D(λ′,µ′)
n′I ′,ν ′L′(�) = δλλ′δµµ′δnn′δII ′δνν ′δLL′ , (A.7)

where

d� = sin β1 cos 1
2β2

(
sin 1

2β2
)3

sin β3 dα1 dβ1 dγ1 dα2 dβ2 dα3 dβ3 dγ3 (A.8)

is the invariant measure, which can be found in the usual ways [21]. The normalization follows
from the dimensionality formula

dim(λ, µ) = 1
2 (λ + 1)(µ + 1)(λ + µ + 2) (A.9)

for the irrep (λ, µ) and the use the parameter range

0 � α1 � 4π, 0 � β1 � π, 0 � γ1 � 4π,

0 � α2 � 2π, 0 � β2 � π,

0 � α3 � 4π, 0 � β3 � π, 0 � γ3 � 4π.

(A.10)

Appendix B. Reduced SU(3) Clebsch–Gordan coefficients

B.1. Basis states

The construction of states in the irrep (p, q) of su(3) is detailed in [18]. We can summarize
this procedure by stating that one requires, at a minimum, a total of p + 2q bosons. These
bosons must be of at least two types when q 	= 0. Thus, if a

†
ij creates a boson of type j in

mode i, we define, quite generally,

Ŝk� = a
†
k1a�1 + a

†
k2a�2. (B.1)

If |0〉 denotes state with no boson excitation, the state∣∣∣∣∣a
†
11 a

†
12

a
†
21 a

†
22

∣∣∣∣∣
q (

a
†
11

)p|0〉 ∼ ∣∣(p, q)(p + q, q, 0); 1
2q

〉
, (B.2)

containing p + q bosons in mode 1, q boson in mode 2 and none in mode 3 , belongs to the
(p, q) irrep. It is, in fact, killed by every Ŝk� with � > k and is thus the highest weight state
of (p, q). Here,∣∣∣∣∣a

†
11 a

†
12

a
†
21 a

†
22

∣∣∣∣∣ = a
†
11a

†
22 − a

†
12a

†
21 (B.3)

is the determinant of the matrix. Other states in (p, q) are obtained by laddering down from∣∣(p, q)(p + q, q, 0); 1
2q

〉
.
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This is not the only possibility. One can verify that∣∣(p, q)(p + q + t, q + t, t); 1
2q

)

=

∣∣∣∣∣∣∣
a
†
11 a

†
12 a

†
13

a
†
21 a

†
22 a

†
23

a
†
31 a

†
32 a

†
33

∣∣∣∣∣∣∣
t ∣∣∣∣∣a

†
11 a

†
12

a
†
21 a

†
22

∣∣∣∣∣
q (

a
†
11

)p|0〉,

∼

∣∣∣∣∣∣∣∣
a
†
11 a

†
12 a

†
13

a
†
21 a

†
22 a

†
23

a
†
31 a

†
32 a

†
33

∣∣∣∣∣∣∣∣

t

∣∣(p, q)(p + q, q, 0); 1
2q

〉
, (B.4)

visibly contains p + 2q + 3t bosons but is equivalent to the state of equation (B.2) because the
determinant ∣∣∣∣∣∣∣∣

a
†
11 a

†
12 a

†
13

a
†
21 a

†
22 a

†
23

a
†
31 a

†
32 a

†
33

∣∣∣∣∣∣∣∣
(B.5)

is an SU(3) scalar.
More generally, if the usual ket |(p, q)nI 〉 denotes a state in (p, q) containing p + 2q

bosons, then the (round) ket

|(p, q)nI) =

∣∣∣∣∣∣∣∣
a
†
11 a

†
12 a

†
13

a
†
21 a

†
22 a

†
23

a
†
31 a

†
32 a

†
33

∣∣∣∣∣∣∣∣

t

|(p, q)nI 〉 (B.6)

differs from |(p, q)nI 〉 by at most a normalization but contains p + 2q + 3t bosons.

B.2. SU(3) Clebsch–Gordan coefficients

The SU(3)-coupling (A, 0) ⊗ (0, A) can be decomposed in the direct sum [19]

(A, 0) ⊗ (0, A) = (A,A) ⊕ (A − 1, A − 1) ⊕ · · · ⊕ (0, 0),

=
A⊕

λ=0

(λ, λ).3 (B.7)

The irrep (σ, σ ) occurs at most once in the decomposition.
To compute SU(3) Clebsch–Gordan coefficients for states in the series of equation (B.7),

we must couple states of the form

|(A, 0)nI1〉|(0, A)ν∗I2〉, (B.8)

which contain a total of 3A bosons of three types. States in the irrep (σ, σ ) of the series of
equation (B.7) are of the form

|(σ, σ )NI3) =

∣∣∣∣∣∣∣∣
a
†
11 a

†
12 a

†
13

a
†
21 a

†
22 a

†
23

a
†
31 a

†
32 a

†
33

∣∣∣∣∣∣∣∣

A−σ

|(σ, σ )N(σ)I3〉, (B.9)

where |(σ, σ )N(σ)I3〉 is the state with 3σ bosons described in [18].
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Table B1. The one-atom case. Reduced SU(3) Clesbsh–Gordan coefficients for (1, 0) ⊗
(0, 1) → (0, 0).

N1 I3 n1 I1 ν∗
1 I2

〈
(1,0)
n1I1

(0,1)
ν∗

1 I2

∥∥∥ (0,0)

N
(σ)
1 I3

〉

0 0 0 1
2 1 1

2 −
√

2
3

1 0 0 0 +
√

1
3

Table B2. The one-atom case. Reduced SU(3) Clesbsh–Gordan coefficients for (1, 0) ⊗
(0, 1) → (1, 1).

N1 I3 n1 I1 ν∗
1 I2

〈
(1,0)
n1I1

(0,1)
ν∗

1 I2

∥∥∥ (1,1)

N
(σ)
1 I3

〉
2 1

2 1 0 1 1
2 +1

1 1 0 1
2 1 1

2 +1

1 0 0 1
2 1 1

2 +
√

1
3

1 0 0 0 +
√

2
3

0 1
2 0 1

2 0 0 +1

Table B3. The two-atom case. Reduced SU(3) Clesbsh–Gordan coefficients for (2, 0) ⊗
(0, 2) → (0, 0).

N1 I3 n1 I1 ν∗
1 I2

〈
(2,0)
n1I1

(0,2)
ν∗

1 I2

∥∥∥ (0,0)

N
(σ)
1 I3

〉

0 0 0 1 2 1 +
√

1
2

1 1
2 1 1

2 −
√

1
3

2 0 0 0 +
√

1
6

Note that, because the state |(σ, σ )N(σ)I3〉 does not contain 3A bosons, we do not have
ni + ν∗

i = N
(σ)
i etc but rather

ni + ν∗
i = N

(σ)
i + (A − σ). (B.10)

Thus we have

|(σ, σ )N(σ)I3〉 =
∑

nνI1I2

|(A, 0)nI1〉|(0, A)ν∗I2〉
〈
(A, 0)

nI1

(0, A)

ν∗I2

∣∣∣∣ (σ, σ )

N(σ)I3

〉
, (B.11)

where M1 = 1
2 (n2 − n3),M2 = 1

2 (ν3 − ν2). The phases of the states |(A, 0)nI1〉, |(0, A)ν∗I2〉
and |(σ, σ )N(σ)I3〉 are those of [18]. The phase of the Clebsch–Gordan coefficient is
determined by forcing

sign

(〈
(A, 0)

(A00) 1
2A

(0, A)

ν∗I2

∣∣∣∣ (σ, σ )

(2σ, σ, 0) 1
2σ

〉)
= +. (B.12)

As always, it is convenient to rewrite equation (B.11) as

|(σ, σ )N(σ)I3〉 =
∑
nν

|(A, 0)nI1〉|(0, A)ν∗I2〉
〈
(A, 0)

n1I1

(0, A)

ν∗
1 I2

∥∥∥∥ (σ, σ )

N
(σ)
1 I3

〉
C

I3M3
I1M1,I2M2

(B.13)
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Table B4. The two-atom case. Reduced SU(3) Clesbsh–Gordan coefficients for (2, 0)⊗ (0, 2) →
(1, 1).

N1 I3 n1 I1 ν∗
1 I2

〈
(2,0)
n1I1

(0,2)
ν∗

1 I2

∥∥∥ (1,1)

N
(σ)
1 I3

〉

2 1
2 1 1

2 2 1 −
√

3
5

2 0 1 1
2 +

√
2
5

1 0 0 1 2 1 −
√

2
5

1 1
2 1 1

2 −
√

1
15

2 0 0 0
√

8
15

1 1 0 1 2 1 −
√

4
5

1 1
2 1 1

2 +
√

1
5

0 1
2 0 1 1 1

2 −
√

3
5

1 1
2 0 0 +

√
2
5

Table B5. The two-atom case. Reduced SU(3) Clesbsh–Gordan coefficients for (2, 0)⊗ (0, 2) →
(2, 2).

N1 I3 n1 I1 ν∗
1 I2

〈
(2,0)
n1I1

(0,2)
ν∗

1 I2

∥∥∥ (2,2)

N
(σ)
1 I3

〉
0 1 0 1 0 0 +1

1 1
2 0 1 1 1

2 +
√

2
5

1 1
2 0 0 +

√
3
5

1 3
2 0 1 1 1

2 + 1
2 2 0 1 2 1 +1

2 1 0 1 2 1 +
√

1
5

1 1
2 1 1

2 +
√

4
5

2 0 0 1 2 1 +
√

1
10

1 1
2 1 1

2 +
√

3
5

2 0 0 0 +
√

3
10

3 1
2 1 1

2 2 1 +
√

2
5

2 0 1 1
2 +

√
3
5

3 3
2 1 1

2 2 1 +1

4 1 2 0 2 1 +1

where C
I3M3
I1M1,I2M2

is the usual su(2) coupling coefficient and the reduced Clebsch–Gordan〈
(A,0)

n1I1

(0,A)

ν∗
2 I2

∥∥ (σ,σ )

N
(σ)
1 I3

〉
does not depend on Mi . Tables B1 to B5 are provided for calculations

involving A = 2 and A = 1.
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Appendix C. Final form of the density matrix for the non-degenerate case

In this section, we present the technical steps to obtain equation (39) from equation (38).
First, multiply both sides of equation (38) by D(µ,µ)∗

(µµµ)0,N(µ)J ′(τ ) for fixed N(µ) and fixed J ′,
integrate over the SU(3)-invariant measure of equation (A.8) and rearrange. This produces

(µ + 1)3

1024π5

〈
(A, 0)

(A00)0

(0, A)

(0AA)0

∣∣∣∣ (µ,µ)

(µµµ)0

〉−1 ∫
dτ D(µ,µ)∗

(µµµ)0,N(µ)J ′(τ )ω(τ)

=
∑
nν

(−1)ν2ρn,ν

〈
(A, 0)

nI

(0, A)

ν∗I ′

∣∣∣∣ (µ,µ)

N(µ)J ′

〉
. (C.1)

In this last expression, the sums over n and ν are not independent but linked by equation (36).
To complete the inversion, we use orthogonality of SU(3) CGs:∑

µJ ′

〈
(A, 0)

nI

(0, A)

ν∗I ′

∣∣∣∣ (µ,µ)

N(µ)J ′

〉 〈
(A, 0)

n̄Ī

(0, A)

ν̄∗Ī ′

∣∣∣∣ (µ,µ)

N(µ)J ′

〉
= δn̄nδĪ I δν̄νδĪ ′I ′ , (C.2)

and rearrange the notation to finally yield equation (39).
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